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Abstract—A low-power (∼ 600nW), fully analog integrated
architecture for a voting classification algorithm is introduced.
It can effectively handle multiple-input features, maintaining
exceptional levels of accuracy and with very low power con-
sumption. The proposed architecture is based on a versatile
Voting algorithm that selectively incorporates one of three
key classification models: Bayes or Centroid, or, the Learning
Vector Quantization model; all of which are implemented using
Gaussian-likelihood and Euclidean distance function circuits, as
well as a current comparison circuit. To evaluate the proposed
architecture, a comprehensive comparison with popular analog
classifiers is performed, using real-life diabetes dataset. All model
architectures were trained using Python and compared with the
software-based classifiers. The circuit implementations were
performed using the TSMC 90 nm CMOS process technology
and the Cadence IC Suite was utilized for the design, schematic
and post-layout simulations. The proposed classifiers achieved
sensitivity of ≥ 96.7% and specificity of ≥ 89.7%.

Index Terms—Activation Function Circuit, Analog VLSI,
Biomedical circuits, Low power design, Machine Learning cir-
cuits.

I. INTRODUCTION

THE integration of Machine Learning (ML) and Artifi-
cial Intelligence (AI) in bioengineering is an essential

catalyst for reshaping research, diagnostics, and treatment
approaches [1]. The complexity of biological systems requires
innovative methods to uncover intricate patterns and predict
their outcomes. ML and AI techniques are used to navigate
complex datasets, revealing insights that conventional methods
may miss [2]. These technologies assist in disease detection,
genomic analysis, protein folding predictions, drug discovery,
and personalized medicine, providing bioengineers with pre-
dictive models that streamline experimentation and reduce trial
and error [2], [3]. Moreover, the impact of ML and AI lies
in their ability to translate theoretical insights into practical
applications, thereby enhancing precision and effectiveness.
Furthermore, emerging techniques focus on the transformation
brought about by ML and AI in the field of bioengineering,
accentuating their role in reshaping the comprehension and
manipulation of biological systems to enhance health [4].

Alongside the advancement of ML and AI in biomedical ap-
plications, the importance of cutting-edge hardware solutions

has surfaced as an essential synergy [5]. The intricate demands
for processing extensive datasets, intricate simulations, and
real-time analyses inherent in bioengineering call for hard-
ware architectures that seamlessly complement the cognitive
capabilities of ML and AI [6]. High-performance comput-
ing systems, specialized hardware accelerators, and advanced
sensor technologies provide the computational power and
precision required to manage the complexities of biological
phenomena [6]. These hardware strides not only expedite the
execution of ML and AI algorithms but also pave the way for
novel methodologies that smoothly integrate data acquisition,
processing, and feedback mechanisms [7]. Covering genomics,
proteomics, and more, the fusion of ML, AI, and purpose-
built hardware empowers researchers and practitioners to delve
further into the intricacies of biological systems [8]. This
synergy lays the foundation for pioneering discoveries and
innovations that significantly impact fields such as medicine,
agriculture, and environmental sustainability.

Analog computing techniques have recently gained renewed
attention in biomedical applications, serving as an innovative
approach to augment ML methodologies [9]. Presenting a
promising avenue for addressing the computational demands
of complex ML tasks in biomedicine, analog computing
demonstrates the ability to process continuous signals in real-
time and leverage the inherent parallelism of physical systems
[10]. This is particularly relevant in scenarios in which preci-
sion, energy efficiency, and low latency are crucial factors. The
suitability of analog computing for processing biological sig-
nals and mimicking physiological processes aligns well with
the intricacies of medical data analyses [11]. By leveraging
the capacity of analog computing to directly manipulate and
process continuous signals, researchers can potentially achieve
faster and more energy-efficient ML inference for applications
such as real-time diagnostics, wearable health monitoring, and
neurocomputing [12], [13]. The fusion of analog computing
with ML in biomedicine holds promise for unlocking novel
insights, facilitating faster decision-making, and enhancing the
overall efficiency of data-driven medical interventions [14].

In the literature there are a variety of analog hardware
classifiers including, cascaded-connected Bayes [15], Gaussian
mixture model (GMM) [16], Radial Basis Function (RBF)
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[17], RBF-Neural Network (NN) [18], Support Vector Ma-
chine (SVM) [19], [20], Multilayer Perceptron (MLP) [21],
K-means [22], a Support Vector Regression (SVR) [23],
Self-Organized Map (SOM) [24], Long Short-Term Memory
(LSTM) [25], a Fuzzy [26], Threshold [27] and cascaded-
connected Centroid classifier [28]. For more information on
analog and mixed signal classifiers, please refer to [29], where
these classifiers are summarized and explained. Compared to
this work, related studies [15]–[17], [19], [20], [24], [26]–
[28] lack the ability to control weights for each separate
feature; instead, they can only adjust the overall probability
for the entire class. The operating range of classifiers in the
existing methodologies is limited. However, with the voting
classification algorithm, there is greater flexibility because
of the absence of a cascaded format connection (regarding
circuits). This offers the following advantages. This method
can handle a large number of features eliminating the need
for Principal Component Analysis (PCA) [30]. Furthermore,
it offers the potential for each circuit to operate with minimal
consumption (by utilizing minimum biasing values, e.g. Ibias).
As a result, it exhibits significantly lower power consumption
than existing methods, especially when dealing with a larger
number of features. All of these aspects are discussed in
Section VI.

Motivated by the low-power and area efficiency re-
quirements of biomedical smart sensor systems [31], [32],
numerous analog feature extraction architectures [33]–[36] and
the different approaches regarding voting classifiers [37]–[40],
this study proposes an alternative, low-power, and analog inte-
grated architecture based on a Voting classification algorithm.
Demonstrating considerable promise as a classifier suitable
for battery-dependent biomedical smart sensor classification
systems, the implemented design attains high accuracy. This
design was meticulously crafted and validated using real-world
diabetes disease prediction dataset [41]. Post-layout simula-
tions conducted in a TSMC 90nm CMOS process via Cadence
IC Suite validated the accuracy of the devised implementation,
compared to a software-based counterpart. Moreover, to en-
sure comprehensiveness, this study incorporates an exhaustive
comparative analysis of the proposed classifier against analog
classifiers.

The reminder of this study is structured as follows. In
Section II, we delve into the essential mathematical back-
ground of the Voting Model used for classification. Section
III presents an analysis of both the high-level architecture of
the proposed classifier and the transistor-level implementations
of the fundamental building blocks. The training and tuning
capabilities of the proposed architecture are described in
Section IV. In Section V, we assess the accuracy of the
classifier using a real-world diabetes dataset. Section VI pro-
vides a comparison study with related analog classifiers and
summarizes and discusses the main aspects. Finally, Section
VII provides concluding remarks.

II. BACKGROUND

In this section, the mathematical background of both the
Voting algorithm and the corresponding ML models (Bayes,

Centroid, and Learning Vector Quantization) which are the
theoretical foundations of the proposed building blocks are
analyzed. Each ML model is associated with a distinct activa-
tion function, implemented in the hardware.

The Voting algorithm was implemented in this study,
because of its simplicity and interpretability [42]. The two
types of voting algorithms are described as follows; Hard
Voting and Soft Voting [42], [43]. The Hard Voting algorithm,
similar to the conventional approach, involves combining class
labels based on the majority vote. However, it acknowledges
the binary nature of a decision by considering only the final
outcome. It does not account for the confidence levels of
individual classifiers or the probabilistic nature of their pre-
dictions. In contrast, the Soft Voting algorithm considers the
probabilities or confidence levels assigned by each classifier
for different classes. Rather than relying solely on majority
voting, it combines the probabilities across all classifiers
and calculates a weighted average. This approach enables a
more nuanced decision-making process by considering the
confidence levels of classifiers. By incorporating probabilistic
information, Soft Voting algorithms tend to be more robust
and accurate in handling classification tasks.

For the analog classifier described here, a Soft-Voting algo-
rithm was used [42]. The classifier consists of multiple voters
(Vi), where i ∈ {1, ..., Nf} and Nf represents the number
of voters corresponding to classes Cki

, k ∈ {1, ..., Ncla} and
Ncla represents the number of classes. Assuming Gaussian
distribution (we also use the Mahalanobis distance), the voting
strength of an input vector V with respect to the class Ck,
k ∈ {1, ..., Ncla} is interpreted as:

SCk
(V ) =

Nf∑
i=1

1√
2πσ2

ki

e

−(Vi−µki
)2

2σ2
ki (1)

where µ is the mean, and σ is the standard deviation.
Subsequently, the votes are linearly combined, allowing a

voter to allocate the percentages of their vote across different
classes, as described in:

FCk
(V ) =

SCk
(V )∑Ncla

k=1 SCk
(V )

(2)

For instance, a voter may assign 40% , 50% and 10% to
the first, second and third classes respectively. This process
is carried out for all voters and the class with the majority
of votes is selected as the winning class as interpreted by the
argmax operator:

θ = argmax
k

FCk
(V ) (3)

where θ represents the class with the highest cumulative vote.

A. Bayes Model

In recent years, there has been a growing interest in the
Bayes model across various fields [44], [45]. This approach
provides a probabilistic framework that integrates prior knowl-
edge with uncertainty estimation. By employing Bayes’ theo-
rem, it updates classification probabilities using observed data.
The model considers both the prior estimation of the data
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under classification and the probability of observing specific
features or patterns in the input data. One notable advantage of
the Bayes model is its effective handling of uncertainty using
probability distributions.

The Bayes probabilistic model [46], [47] is described by:

P (Ck|X) =
P (Ck) · P (X|Ck)

P (X)
(4)

where Ck denotes the k-class (k ∈ {1, ..., Nc}), Nc represents
the number of classes and X is the input vector.

• P (Ck|X) is the posterior (a-posteriori) distribution of Ck

class given the observations in X.
• P (Ck) is the prior (a-priori) distribution of Ck class.
• P (X|Ck) is the likelihood of observing X given the

distribution of Ck class.
• P (X) is the probability of observing X (evidence prob-

ability), which is also called the marginal likelihood or
the normalization constant. This ensures that the posterior
distribution is integrated into 1.

The likelihood function for an independent Gaussian dis-
tribution is the product of the probability density function
evaluated at each observation Ckn .

P (X|Ck) =

Nf∏
n=1

f(Xn|Ckn
) (5)

where Nf denotes the number of features in each class. For a
Gaussian distribution the probability density function is

f(x|µ, σ) = 1√
2πσ2

e
−(x−µ)2

2σ2 (6)

Combining the above equations, we obtain

P (X|Ck) =

Nf∏
n=1

1√
2πσ2

kn

e

−(Xn−µkn
)2

2σ2
kn (7)

Applying the Maximum Likelihood Estimation (MLE) method
results in the hypothesis that has the greatest probability of
being true. To this end, the values of the parameters that
maximize the posterior probability of Ck class are computed
as follows:

θ = argmax
k

P (Ck|X) = argmax
k

P (Ck) · P (X|Ck) (8)

where θ represents the MLE of the parameters of Ck. The
evidence probability P (X) does not affect the result, because
it serves only as a normalization constant. The main reason
is that in each class the evidence probability is the same.

B. Centroid Model

The Centroid Classifier (CC) is an essential example of
a centroid-based classification model [48]. In this paradigm,
each class i is uniquely represented by vector-form centroid
(ccci). Consequently, an input vector, also represented as qqq, is
assigned label y(qqq) of the class whose centroid bears the
closest proximity to it, as documented in [49], [50]. This
process was captured succinctly using the following equation:

y(qqq) = argmin
i∈{1,2,...,N}

||qqq − cicici||2, (9)

where N denotes the number of classes. Another alternative is
to evaluate the similarity between the input qqq and each centroid
ccci, which then informs the label y(qqq):

y(qqq) = argmax
i∈{1,2,...,N}

sim(qqq, cicici), (10)

Here, sim() is a chosen similarity function, for example the
Mahalanobis distance [51].

Expanding upon the CC, the Multiple Centroid Classifier
MCC accommodates the assignment of multiple centroids
(clusters) to each class. This enhancement propels the clas-
sifier’s accuracy. Consequently, an input vector qqq is allocated
a label y(qqq) as per the equation:

y(qqq) = argmax
i∈{1,2,...,N}
j∈{1,2,...,Ki}

sim(qqq, cijcijcij), (11)

where Ki represents the number of centroids assigned to
the class i. This extended methodology demonstrates the
adaptability of the classifier in handling diverse and intricate
classification scenarios.

C. Learning Vector Quantization Model

Learning Vector Quantization (LVQ) is a prototype-based
classification algorithm [52]. In LVQ, a set of weight vectors
are employed as prototypes, and these prototypes are defined
within the feature space of the observed data. An LVQ can
be conceptualized as a two-layer neural network architecture,
where the weight vectors in the first layer represent these
prototypes. This approach allows LVQ to make classification
decisions based on the similarity between input data points
and prototype vectors, making it a valuable tool in pattern
recognition and machine learning tasks. Consequently, LVQ
facilitates a user-friendly representation of the input data,
which is especially beneficial for experts within the respective
application domain. Additionally, it can be readily extended to
handle multi-class problems [53]. LVQ is widely used in ML,
finding applications in diverse areas, ranging from Magnetic
Resonance Imaging (MRI) segmentation [54], detection of
seizure activity in EEG [55] and prediction of laser butts [56]
to COVID-19 diagnosis [57]. These applications underscore
their significance, making hardware development and imple-
mentation a worthwhile endeavor.

The LVQ model [52] is initiated by assigning a set of Nd

codebook vectors to each of the Ncla distinct classes. It then
proceeds to identify the codebook vector mi with the smallest
Euclidean distance (for this work Mahalanobis distance) to
the input sample x. Subsequently, sample x is categorized
as belonging to the class Ncla associated with its nearest
codebook vector mi. This classification was performed using
the following equation:

c = argmin
i∈{1,2,...,Nv}

∥mi − x∥. (12)

where ∥.∥ denotes the Euclidean norm. The information per-
taining to the winning class c serves a dual purpose during
both inference and training. It plays a crucial role in correctly
classifying the input data x. Furthermore, it guides the
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updating of codebook vectors (feature arrays) during training
based on whether x and mi belong to the same class. Thε
updating process is described by the following equation:

mc(t+ 1) =

{
mc(t) + a(t)

(
x(t)−mc(t)

)
, cm = cx

mc(t)− a(t)
(
x(t)−mc(t)

)
, cm ̸= cx

(13)
Here, a(t) ∈ [0, 1] represents the learning rate.

III. PROPOSED ARCHITECTURE

In this section, we analyze the proposed analog high-level
architecture of the voting classifier, along with the basic
building blocks. Specifically, the proposed architecture can
implement several ML models. We selected Bayes, Centroid
and Learning Vector Quantization (LVQ) classifiers to demon-
strate the voting architecture. To this end, we introduce an
Activation Function Circuit (AFC) that can selectively realize
either the Gaussian function or Mahalanobis distance function
depending on the particular ML model.

The proposed voting architecture is versatile, accommo-
dating various numbers of classes (which corresponding to
prototypes for LVQ) and input dimensions that represents
the number of features. To delve into the architecture of
the proposed classifier, let’s consider a scenario involving
a problem with Ncla classes and Nd input dimensions. An
example of the k-th class, k ∈ {1, 2, ..., Ncla} of the proposed
classifier is shown in Fig. 1. It comprises two basic blocks; an
AFC and a cascode Current Mirror (CM). Each class consists
of Nd AFCs, each of which describes an activation function
(Gaussian or Mahalanobis distance) in the domain space of
the classification problem, as explained thoroughly in Section
II. In addition, using the Soft-Voting model, described in
Eq. (1), a summation of the output currents, representing the
probability density function, is required. This summation
of the classes’ output nodes is performed through the cascode
CMs. These were utilized to minimize potential distortions
in the calculations that might arise from undesirable effects
on the output currents of the AFCs.

The analog integrated architecture of the proposed voting
classifier is shown in Fig. 2, where Iin and I

(k)
r , k ∈

{1, 2, ..., Ncla} represent the input and parameter vectors

respectively, that is Iin = {Iinj}Nd

j=1 and I
(k)
r =

{
I
(k)
rj

}Nd

j=1
.

It consists of Ncla class cells, as described above and their
outputs are fed into a Winner-Take-All (WTA) circuit to
determine the winning class.

Because a low-power design is one of the main goals of
this work, all transistors operate in the sub-threshold region,
with the power supply rails set to VDD = −VSS = 0.3V .
The selection of the basic building blocks and power sup-
ply rails is guided by a trade-off between achieving high
accuracy, minimizing power consumption, and ensuring the
correct operating principles for the entire classifier. In addition,
we ran noise-transient simulations to verify the behavior of
the proposed classifier. The classification results appear to
be robust. To a certain extend this indicates us that the
errors owing to internal noise are small concerning the errors
in the data. Moreover, the ease of implementation of the

Gaussian function and Mahalanobis distance circuits, renders
them favorable candidates for area efficient and low-power
classifiers.

The selection of dimensions is a multiparametric process,
as reducing W and L leads to a decrease in the overall area.
Moreover, increasing L improves the system’s noise, reduces
leakage current, and decreases the overall bandwidth (BW).
On the other hand, increasing W enhances noise, increases
leakage current, and reduces BW. Additionally, increasing
the dimensions reduces mismatch between devices. Based on
the above considerations and aiming for correct biasing, the
selection of dimensions in the transistors was made.

V

V

DD

VDD

I(k)r1 I r

Iout

VSS

VSS

I in

V
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...

C

Iin1 CM
Iref I out

VSS
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DD
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V
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V

VC

C
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IoN
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d

d

d
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VSS
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V
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C

Iin2 CM
Iref I out

VSS
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Io2

...

AFC 2

AFC 1

Fig. 1: The implementation of the k-th class, k ∈ {1, 2, ..., Ncla},
of the proposed classifier. It comprises Nd AFCs that describe the
similarity functions for each feature, along with an equal number of
cascode CMs used to implement the current summation on the output.

...

Iin1

IinNcla

Iout1

IoutNcla

...

...

...

Class Ncla

Iin2 Iout2

Class 1
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I(1)r

I(2)r

I(Ncla)r

I1

I2

INcla

Iin

WTA

Fig. 2: The proposed classifier architecture consisting of Ncla class
cells, as depicted in Fig. 1, and a WTA circuit that determines the
winning class.
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A. Current-mode Gaussian function circuit

To implement a Gaussian function as an activation function
a current-mode Gaussian function circuit [15] was employed
as the AFC, as depicted in Fig. 3. The characteristics of the
Gaussian function that is generated, such as the mean value,
variance, and height, can be manipulated through electronic
control by utilizing the parameters of the implemented Gaus-
sian function circuit. Specifically, the height of the Gaussian
function was determined by the bias current Ibias, as shown
in Fig. 4(left). The mean value is regulated by the current Ir,
which influences the modified differential pair as shown in
Fig. 4(right). As for the variance, there exist two methods to
manage it; alteration of the bulk voltage Vc for transistors
Mnd1 and Mnd2 (deep-n-well transistors in a triple-n-well
technology) in the differential pair, as shown in Fig. 5(left)
and manipulation of the size ratio M (number of multipliers
in Mn5 − Mn8) between the neuron transistors in the WTA
circuit, as depicted in Fig. 5(right). By employing deep-n-well
transistors, we achieve higher accuracy by setting a specific
variance for each AFC based on the training data. This was
achieved through the trade-off of a slight increase in area. The
dimensions of the transistors in the current-mode Gaussian
function circuit are listed in Table I.

TABLE I: Transistors’ Dimensions for the Gaussian function circuit
(Fig. 3).

Transistors W/L (µm/µm) Transistors W/L (µm/µm)
Mn1-Mn3 0.4/1.6 Mn4 0.8/1.6
Mn5,Mn7 1.2/1.6 Mn6,Mn8 1.2/3.2
Mnd1,Mnd2 0.4/3.2 Mp1-Mp6 0.4/1.6

Mp4
Mp1

Mp3

Iout

✄ ✝ ✠

Mp2

✁ ✁ ✁ ✁

VDD ✁ ✁

Mp5 Mp6

Mnd1
Vc

Mn5

Mnd2
Vc

Mn7

Mn6 Mn8

✜

✢ ☞ ✣ ✤

✁ ✁

Mn2Mn1

Ibias

VDD

VSS

VSS

Mn4Mn3

VSS

✜

✢ ☞ ✣ ✤

✁ ✁

Iin

VDD ✁ ✁

Ir

VDDI1 I2

Vs

Fig. 3: Gaussian Function circuit as AFC. The currents Iin, Ir and the
voltage Vc correspond to the classifier’s input signal, mean value and
variance respectively. Also the bias current Ibias control the height
of the Gaussian function.

Fig. 4: The output current of the Gaussian function circuit as a
function of Iin and parameterized on Ibias, for Ir = 7nA, Vc =
180mV and M = 1 (Left). The output current of the Gaussian
function circuit as a function of Iin and parameterized on Ir , for
Ibias = 12nA, Vc = 220mV and M = 1 (Right).

Fig. 5: The output current of the Gaussian function circuit as a
function of Iin and parameterized on Vc, for Ibias = 10nA, Ir =
7nA and M = 1 (Left). The output current of the Gaussian function
circuit as a function of Iin and parameterized on M (number of
multipliers), for Ibias = 10nA, Ir = 7nA and Vc = 180mV (Right).

B. Mahalanobis distance circuit

To realize the Euclidean distance function as a similarity
function, relying on Eq.(10), a specialized circuit was em-
ployed as AFC. This circuit was designed to calculate the
Mahalanobis distance in a current-mode fashion, as illustrated
in Fig. 6. This particular circuit operates using the translinear
principle [58], which is a technique commonly used in analog
circuits for various computations. The mathematical expres-
sion that underlies the Mahalanobis distance circuit is based
on the ratio of the two currents Iin and Ir:

Iout =
I2in
Ir

(14)

The output current of the Mahalanobis distance circuit is
tuned via the current parameter Ir and the voltage parameter
Vc, as illustrated in Fig. 7. When it comes to performing
summation in the current domain, the Mahalanobis distance
circuit offers a straightforward approach. This is accomplished
by physically connecting wires that carry the currents to be
summed. This direct current-based summation mechanism is
a characteristic of current-mode circuits and simplifies the
overall computation process. However, to improve the quality
of the aforementioned summation, cascode current mirrors
were employed, as mentioned earlier in this Section. The
dimensions of the Mahalanobis distance circuit transistors
were set to W

L = 3.2µm
1.6µm .

C. Cascaded Winner-Take-All Circuit

The process of identifying the class with the majority of
votes involves utilizing a distance comparison circuit, specif-
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VC

✁ ✁

Ir

VDD

Iout

Fig. 6: Translinear circuit for computing I2in
Ir

needed to obtain the
Mahalanobis distance. It is used as an AFC.
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Fig. 7: The output current of the Mahalanobis distance circuit as a
function of Iin and parameterized on Ir for Vc = VSS = −300mV
(Left). The output current of the Mahalanobis distance circuit as a
function of Iin and parameterized on Vc for Ir = 3nA (Right).

ically referred to as a WTA circuit (argmax operator circuit)
[59]. In the context of a classification task involving Ncla

classes, the conventional Lazzaro WTA circuit comprises of
Ncla neurons. As shown in Fig. 8, these neurons share a
common bias current. Each neuron in the WTA circuit corre-
sponds to a distinct class. The functionality of the WTA circuit
revolves around effectively recognizing the class associated
with the highest input current, subsequently assigning a non-
zero output current to the corresponding neuron, while the
remaining neurons provide an output current of zero.
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Fig. 8: A Ncla-neuron Standard Lazzaro NMOS Winner-Take-All
(WTA) circuit.

In situations where multiple input currents exhibit com-
parable magnitudes, the circuit functions within its linear

region, potentially leading to the emergence of multiple win-
ners. However, this outcome is generally undesirable in most
classification scenarios. To address this concern, an enhanced
WTA circuit is used, as shown in Fig. 9. Notably, this
modified design involves a cascaded arrangement of three
WTA circuits, following a structure similar to that presented in
[16]. By alternating the employment of the NMOS and PMOS
designs, the need for interconnecting elements (i.e. current
mirrors) between consecutive WTA circuits is obviated. The
dimensions of the transistors in the Cascaded WTA circuit
were set to W

L = 0.4µm
1.6µm .
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Fig. 9: The implemented Cascaded WTA circuit built by alternating
the simple PMOS and NMOS WTA designs. It provides more
accurate results because it can deal with ambiguous cases.

IV. TRAINING AND TUNING CAPABILITIES

The previously mentioned voting hardware architecture was
developed based on AFC, serving as a distance metric for
the prototypes within each class. This approach allows for
the utilization of electronically tunable parameters, namely
Ir and Vc, which can be employed to create a post-layout
classification chip. This chip offers easy adjustability, making
it adaptable to specific requirements of each application.
Furthermore, the tunability of the system was expanded to
such an extent that the designed classifier became versatile.
This versatility enables the classifier to effectively address a
wide array of classification challenges, regardless of the input
dimensions (Nd) or quantity of classes (Ncla).

A. Offline training

Initially, the voting procedure utilized software to determine
the circuit parameters’ values. Unfortunately, this type of
circuit has inherent limitations. To address this issue, a linear
approximation is introduced to establish the range for each
feature within the necessary framework. The dataset file adopts
an AFC operational range of [3, 9] nA, achieving an optimal
balance between accuracy, minimal power consumption, and
space utilization. During the approximation process, a delicate
trade-off occurs between information preservation and range
proportionality. This arises from the AFC’s capability to attain
an optimal output solely for a particular Ibias, with any
departure from this bias current leading to a reduction in accu-
racy. Moreover, augmenting the supplier values helps alleviate
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the accuracy decline stemming from Ibias deviation, yet it
concurrently enlarges the area and power supply demands.

It’s important to recognize that selecting a lower range
presents a challenge, as it narrows down the voting range for
each AFC excessively. This restricted scope complicates the
accurate detection of subtle differences. On a positive note, a
notable advantage of this algorithm is its ability to leverage
the full allowable range of AFC. This adaptability is primarily
enabled by the autonomy of each AFC, which is achieved
through the utilization of a cascode current mirror after them.

The chosen dataset is accessible in digital format, with its
features pre-processed to accommodate the circuit’s opera-
tional range. Following this, the software-based classifier un-
dergoes training on the dataset for a specific number of epochs
to attain the highest accuracy and desirable cluster/centroids.
The selection of the optimal number (preferring the minimum
possible) of clusters/centroids is conducted in software, since it
is a hyperparameter of the classifier, targeting the best accuracy
[60] (avoiding overfitting).

In hardware tuning, the objective is to reduce power con-
sumption while maintaining high classification accuracy levels.
For our classification task, the number of centroids/clusters
was set to Nclu = 1 per class, as this choice results in
lower consumption. However, determining the values of Vc

and Ibias presents a wide range of possibilities. A lookup table
is employed to establish the relationship between the height
or variance (minimum value) and their respective circuit pa-
rameters, Ibias or Vc. The Gaussian function circuit facilitates
the customization of both the height (Ibias) and variance (Vc)
of the Gaussian curve, utilizing the training data. In contrast
to Mahalanobis, where only Vc is adjusted, this modification
influences the curve’s minimum. To ensure a fair comparison
among the three machine learning models, we chose to set
constant values for Vc and Ibias based on power consumption,
rather than utilizing the training data, which would be the
optimal approach. This decision was made due to the trade-
off of sacrificing a slightly lower accuracy for the implemented
models.

Since this simplified voting algorithm, which ensures a
fair comparison among implemented models, lacks a direct
method to determine Vc and Ibias (as these circuit parameters
don’t uniformly impact characteristics across the three models)
during training, a decision was made to assign a constant
arbitrary value across all Ncla classes. Regarding the Bayes
Voting classifier, it offers the ability for tuning. This approach
ensures that any notable decrease in hardware accuracy can
be traced back to the software Ir value extraction, simpli-
fying development and minimizing unnecessary complexity.
This process is performed once for each specific application,
with the resultant parameters then serving as inputs in the
classifier. Furthermore, in a complete system implementation,
we could export and store the resultant parameters in some
form of memory, such as analog memristive type or digital
accompanied by low-rate ultra-low-power data converters [61],
[62]. By utilizing low-power data converters alongside digital
memory, programming the parameter values (Ir, Ibias, and Vc)
during training becomes straightforward.

For every cluster cell, the parameter current [Iri]Nd
i=1, where

Nd , corresponds to the components of the mean vector in the
modeled Gaussian probability density function or Euclidean
norm. These values can be directly stored in the memory.
On the other hand, the parameter voltages [Vci]

Nd
i=1 regulate

the variance of each cluster using a bounded, monotonically
increasing, and non-linear function. To establish this function,
a single AFC was subjected to simulation with varied Vc

values, , and the resulting curves were fitted to a polynomial
model (lookup table). This model creates a mapping between
acquired variances and excitation voltages Vc. Additionally,
each cluster cell is influenced by Nd biasing currents Ibias,
in Gaussian-based models. These biasing currents result from
three distinct parameters: the prior probability associated with
each class, the cluster weights, and the voting strength for each
feature. Crucially, the bias currents were normalized within the
range of [3, 9] nA. This normalization ensures proper circuit
functionality while keeping power consumption at a low level.

In this research on analog hardware classifiers, the software-
based training phase was executed using Python, comple-
mented by an array of indispensable libraries. These included
scipy.io for efficient loading and saving of MATLAB files,
matplotlib for versatile data visualization, and pandas for
seamless data manipulation and analysis. The inclusion of
NumPy bolstered our numerical computing capabilities, fa-
cilitating streamlined data handling and processing. Leverag-
ing the rich functionality of scikit − learn, we employed
various machine learning tools such as Gaussian mixture
models, K-means clustering, and classification metrics like
classification reports and confusion matrices. Additionally,
the PyTorch library was instrumental in implementing and
training neural network-based classifiers, offering flexibility
and scalability in model architecture design. This comprehen-
sive software toolkit enabled robust experimentation and fine-
tuning of our classifiers prior to hardware testing, laying a
solid foundation for our research endeavors. Regarding the
number of epochs, only for LVQ is a hyperparameter which
for this specific task is equal to one.

B. Architecture parameterization

The proposed classifier introduces the ability of post-layout
adjustments in terms of dimensionality and classes. This
adaptation transforms the operational dynamics of the archi-
tecture. This capability complements the tunability inherent in
the provided curve (Gaussian or Euclidean), concerning the
tuning of Ir, Vc, and Ibias values, as outlined in the previous
subsection. This flexibility can be particularly advantageous, in
scenarios where a smaller classification task with fewer classes
ncla and features nd is required. By designing a larger system
comprising Ncla > ncla classes and Nd > nd sequentially
linked AFCs, the same classifier topology can effectively
tackle this reduced classification problem, eliminating the need
for a costly fabrication repetitions.

Turning to the tunability of input dimensionality, control is
exerted through parameters Ir and Vc, alongside input current
Iin. For the initial (Nd − nd) out of the Nd , all three
parameters Ir, Vc, Iin, are set to their lowest values, forming
a zero current buffer for a specific bias current Ibias = 0
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(only for the specific AFCs). This configuration channels the
system’s nd-dimensional input to the remaining nd AFCs,
thereby forming at lower-dimensional classifier. Importantly,
reducing dimensions does not proportionally lower the total
power consumption, because all the fabricated Nd AFCs
remain almost operational.

The adjustability of the classes is predominantly achieved
through the bias current Ibias for hardware classifiers. First,
by tuning each AFC using different Ibias value, a weighted
approach can be achieved by assigning weights to each feature
of the classification problem. On the other hand, by setting
the bias current of an inactive feature to zero, it becomes
dormant, as its output current drops significantly below 1nA.
This manipulation effectively alters the effective class count.
Alternatively, the same goal is achievable by symmetrically
configuring Iin and Ir for each nd bump in the inactive class.
For instance, all Ir values can be set to low current values
and Iin to high. In contrast to dimension reduction, decreasing
class numbers notably curtails the total power consumption, as
completely unused fabricated input dimensions are involved.
Class tunability becomes particularly advantageous when the
hardware classifier is unnecessary. Setting Ibias, Iin and Ir
for all classes to zero deactivates the classifier, ushering in a
power-saving mode.

Finally, the system’s adjustability extends to the customiza-
tion of Ibias and Vc. Although the bias current and variance
voltage values for all AFCs remain constant owing to algo-
rithmic constraints linked to the software implementation and
the utilization of AFCs primarily as a comparable distance
metric, the classifier’s design process maintains flexibility. This
enables a potential change in the approach if a more advanced
method is developed. Consequently, the design procedure and
classifier validation remain unbounded, accommodating fine-
tuning adjustments despite the potential early fabrication needs
for specific applications.

V. APPLICATION EXAMPLE AND SIMULATION RESULTS

In this section, we evaluate the proposed circuit architecture
described in Section III by applying it to a distinct biomed-
ical classification task. This architecture incorporates three
essential mathematical classification models, Bayes, Centroid,
and LVQ. By implementing the techniques elucidated in
the previous section, a system layout is created capable of
handling datasets characterized by Nd = 49 features and
Ncla = 3 classes [41]. The selection of specific values
(Nd = 49 and Ncla = 3) was made to ensure an area-efficient
implementation, aligning with the number of dimensions in the
diabetes disease management and prediction dataset file which
will be analyzed. To be more specific, within this layout, each
of the three classes comprises 49 Gaussian function circuits,
49 Mahalanobis distance implementation circuits, and two
primary switches (allowing the selection of either Gaussian
or Euclidean approximation). Consequently, this single layout
allows us to test all three primary models. Furthermore,
this layout’s flexibility enables adjustments to accommodate
varying numbers of classes (up to three) and dimensionalities
(up to 49). The layout implementation, shown in Fig. 10. In

order to mitigate the mismatch effects due to process and
fabrication variations the following measures were taken at
the layout level

• Each mirror was constructed using the common centroid
technique with multiple instances for each device and the
reference device is placed in the center of the transistor
array forming the mirror.

• Each differential pair is constructed interleaving the tran-
sistors that form them.

• Dummy devices are added around the devices that need
to be matched.

To further reduce the mismatch between the various devices
that need to be matched (i.e. mirrors and differential pairs),
their gate length is selected to be much greater than the
process minimum allowable value [63]. Compared to related
cascaded classifiers [15]–[17], [19], [20], [24], [26]–[28] each
AFC includes an additional CM, offering the capability for
independent operation at the expense of an increased area.
The total area is equal to 0.7539mm2 (the layout incorporates
the three analog classifiers as proposed).
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Fig. 10: Layout of the proposed classifier architecture. The total
area is equal to 0.7539mm2. Common-centroid technique is used
to address manufacturing considerations.

The dataset [41], diabetes disease management and predic-
tion, from the UCI Machine Learning Repository, offers a
comprehensive repository of information regarding diabetes-
related healthcare in the United States for the years spanning
from 1999 to 2008. It contains Nd = 49 features, Ncla = 3
classes. It provides a wealth of data encompassing patient
demographics, admission and discharge details, medical diag-
noses, and treatment procedures across 130 different hospitals.
This dataset serves as a valuable resource for healthcare
researchers, policymakers, and data analysts interested in
understanding diabetes trends, treatment outcomes, and health-
care disparities over a decade. Researchers can leverage this
dataset to investigate factors influencing diabetes management,
develop predictive models, and contribute to the enhancement
of healthcare strategies aimed at improving diabetes care and
outcomes in the United States. It represents a crucial tool
in advancing our knowledge of diabetes-related healthcare
and guiding evidence-based decisions to enhance patient well-
being.

The concept here is that a low-power analog integrated
system is designed for diabetes prediction. In this scenario,
let’s consider a person who has been diagnosed with diabetes
or is at risk of developing it. This individual wants to monitor
their blood glucose levels continuously to manage their con-
dition effectively and minimize the risk of complications. The
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low-power analog integrated system could consist of wearable
sensors that continuously monitor the person’s physiological
parameters, such as blood glucose levels, heart rate variability,
and other relevant biometric data. These sensors are designed
to be lightweight, unobtrusive, and energy-efficient, allowing
the person to wear them comfortably throughout the day with-
out frequent recharging. For example, an integrated glucose
sensor consumes less than 100µW [64], and the proposed
analog classifier consumes less than 700nW . In contrast,
digital counterparts consume between 150µW to 10mW since
they require power-hungry conversions from the analog to the
digital domain [65]. As a result, the total power consumption
is reduced multiple times.

The system incorporates low-power analog signal process-
ing techniques to accurately capture and process the raw
physiological signals from the sensors. Once the physiological
data is captured and processed, the system employs machine
learning algorithms in hardware to analyze the data and predict
the likelihood of blood glucose fluctuations or diabetic events,
such as hypoglycemia (low blood sugar) or hyperglycemia
(high blood sugar). These algorithms could be trained on
large datasets of historical physiological data collected from
individuals with diabetes, enabling the system to learn patterns
and correlations indicative of impending glucose fluctuations.
The predictions generated by the system are then relayed to
the user in a dedicated wearable device. This allows the user
to take proactive measures. Overall, the low-power analog
integrated system for diabetes prediction offers a non-invasive,
continuous monitoring solution that empowers individuals
with diabetes to proactively manage their condition and lead
healthier lives.

To demonstrate the efficacy of the proposed classification
pipeline, we conduct a rigorous training and validation process.
This procedure was repeated 20 times for the dataset to ensure
robust classification accuracy and minimize the influence of
random factors associated with software-based train-test splits.
In each iteration, we compare both the analog and soft-
ware implementations using identical training and validation
datasets. The accuracy rate for each iteration is presented
in the following figures, and the best, average, and worst
accuracy values are summarized in the Table II. Additionally,
a sensitivity analysis of the circuit is performed through Monte
Carlo simulations (over process and mismatch variations),
in the dataset, involving N = 100 data points. Finally, we
assess the performance of the proposed classifier, which is
designed based on the aforementioned validation procedure,
using the implemented layout in post-layout simulations. It’s
worth noting that all the circuits and layouts discussed in this
study were developed within the Cadence IC design suite,
employing TSMC’s 90nm CMOS process.

The fixed mean value, variance, and height for the activation
functions were initially determined based on independent data
that were not used in the next sets (validation set). Subse-
quently, independent data were employed, of which 70% were
selected each iteration, related to the training of the proposed
classifier and the remaining 30% were used to calculate the
classification accuracy, as presented in the simulation results.
This split is employed to train a software-based classifier. To

ensure a fair and unbiased comparison of results, both the
software-based and hardware-based implementations of the
classifier are evaluated on the same test set. Furthermore, in
order to mitigate the impact of random variation stemming
from the train-test split, the entire training and validation
process is repeated 20 times. Table II presents a summary
of the outcomes pertaining to the management and prediction
of diabetes disease across all the classifiers that have been
implemented. Furthermore, for illustrative purposes, Figs. 11,
12, and 13 provide visual representations of these relevant
results. Note that there is a slight decrease in hardware
accuracy compared to software. This is primarily because the
circuits generate an approximation of the requested functions
(Gaussian and Mahalanobis) but are not ideal. However, the
training of the parameters forms the foundation of their ideal
model.

Fig. 11: Classification results of the Bayes model and the equivalent
software model on the diabetes disease management and prediction
dataset over 20 iterations.

Fig. 12: Classification results of the Centroid model and the equiva-
lent software model on the diabetes disease management and predic-
tion dataset over 20 iterations.

The classifier architecture’s robustness is further assessed
by conducting a sensitivity analysis through Monte-Carlo
simulations. In this evaluation, 100 runs are executed using
the parameters and the test set from one of the previous
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Fig. 13: Classification results of the LVQ model and the equivalent
software model on the diabetes disease management and prediction
dataset over 20 iterations.

TABLE II: Classification results on the diabetes disease management
and prediction dataset over 20 iterations.

Best (%) Worst (%) Mean (%)
Bayes Software 97.50 90.50 94.18
Bayes Hardware 91.20 86.20 88.45

Centroid Software 98.90 91.70 95.49
Centroid Hardware 94.00 88.30 90.90

LVQ Software 99.40 92.00 95.90
LVQ Hardware 96.00 90.80 93.22

20 iterations. The resulting Monte-Carlo analysis histograms
are depicted in Fig. 14. The mean value (range: µM =
89.20 − 93.58% depending on the mathematical model) and
the standard deviation (range: σM = 0.83− 1.11% depending
on the mathematical model) from this analysis signify strong
sensitivity characteristics and robust operational performance.

Except for Monte-Carlo analysis, the proposed classifiers
are tested over Process-Voltage-Temperature (PVT) variations.
The selected corners are TT, SS, FF, SF, FS (T:Typical, S:Slow,
F:Fast). Additionally, the power supply rails variation is set in
the range VDD = −VSS = 0.25V to VDD = −VSS = 0.35V .
Concerning temperature, the selected range is from −25oC
to 125oC. The same PVT variations with corners are used
for the Monte Carlo analysis. All three classifiers demonstrate
robustness across corners, achieving a minimum classification
accuracy of 83.78%, 84.41% and 86.02% for Bayes, Centroid
and LVQ models respectively (worst case scenario). The worst
case corner is SS, −25oC, VDD = −VSS = 0.25V and
low software-based accuracy. The robustness is achieved using
cascode current mirrors and long (L) transistors. Also, simula-
tion indicates that the insensitivity of the output results to the
biasing parameters (Ir, Ibias and Vc) as long as they remain
within the acceptable operating range. Finally, corner and
Monte-Carlo simulations indicate that the circuit performance
is sufficiently robust, and calibration is not necessary as long
as the parameter set remain within their acceptable ranges.

In order to provide a more complete approach, we also
calculate the metric Sensitivity which is one of the main
characteristic for the diabetes disease management and pre-
diction dataset. This metric is related to the true predicted

diabetes cases over the total diabetes cases (the total cases
combine the predicted cases and the missed cases). The mean
specificity values for Bayes, Centroid and LVQ models are
96.73%, 97.18%, and 98.58%, respectively.
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Fig. 14: Post-layout Monte-Carlo simulation results of the three clas-
sification models on the diabetes disease management and prediction
dataset with µM = 89.20% and σM = 0.83%, µM = 91.19% and
σM = 1.11% and µM = 93.58% and σM = 0.98% for the Bayes,
Centroid and LVQ respectively.

VI. DISCUSSION AND COMPARISON

Within the existing literature, it is noteworthy that the
majority of analog classifiers are typically tailored for specific
applications. This situation hinders the feasibility of conduct-
ing an impartial comparison among diverse implementations.
Consequently, this allows us to adapt the design of related clas-
sifiers to fit the same application, facilitating an overall per-
formance comparison both between ML models and different
approaches. All the summarized classifiers are implemented
in a TSMC 90 nm CMOS process technology, with power
supply rails selected based on the operating region and a trade-
off between higher accuracy and lower power consumption.
All are implemented for the same dataset (diabetes disease
management). In particular, Table III provides a performance
overview of this research alongside related classifiers (referred
in Introduction), within the context of diabetes disease man-
agement and prediction. The dataset used here has 49 features.
Some architectures (multivariate activation functions) in Table
III e.g. [15] cannot be extended to have so many inputs since
their functionality is reduced dramatically. To this end all such
architectures have been modified to 14 input features. To be
able to feed them with the dataset as unbiased as possible, we
used PCA to convert the feature vector dimensionality from
49 (originally) to 14.

Specifically, the implementations of ML models referenced
in Table III rely on approximations of equivalent mathemat-
ical models. Previous research [15]–[17], [19], [20], [24],
[26]–[28] builds upon the concept of multivariate activation
functions, which are implemented in analog circuitry using
cascaded AFCs, where the bias current of each circuit is
the output current of the previous stage. For example, the
output current (Iout) of the Gaussian function circuit reaches
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TABLE III: Analog classifiers’ comparison on the diabetes disease management and prediction dataset. *The dataset’s features’ set has been
reduced using PCA to match the input dimensionality of these classifiers

Classifier
Best

accuracy (%)

Worst

accuracy (%)

Mean

accuracy (%)

Power

consumption (µW )

Processing speed(
classifications

s

) Energy (pJ) per

classification

No. of

Dimensions

This work Bayes 94.40 89.70 91.54 0.688 320K 2.15 49

This work Centroid 97.20 90.90 94.21 0.572 380K 1.51 49

This work LVQ 99.20 94.10 96.48 0.617 275K 2.24 49

[15] Bayes* 81.70 72.70 77.43 0.988 170K 5.81 14

[16] GMM* 82.40 74.30 77.83 2.43 170K 14.29 14

[17] RBF* 82.80 73.90 78.51 29.54 170K 174.35 14

[18] RBF-NN 93.10 82.30 87.93 1.63 270K 6.04 49

[19] SVM* 87.80 82.30 84.58 973.4 870K 1120 14

[20] SVM* 85.70 81.60 83.48 71.8 140K 512.86 14

[21] MLP 95.20 92.30 93.83 1120 930K 1200 49

[22] K-means 97.30 88.70 91.22 355.7 5M 71.14 49

[23] SVR 91.90 86.70 88.65 112.3 870K 129.08 49

[24] SOM* 95.30 91.10 93.12 891 180K 4950 14

[25] LSTM 100.00 95.80 98.74 78000 870M 89.65 49

[26] Fuzzy* 87.80 79.40 83.72 1.21 4.55K 265.93 14

[27] Threshold* 85.40 78.30 84.31 0.522 100K 5.22 14

[28] Centroid* 84.70 78.60 81.93 4.54 170K 26.71 14

its maximum value when Iin = Ir. This maximum value
is equal to Ibias. For Iin non equal to Ir, it leads to a
degradation of the current from the input to the output of
the multivariate Gaussian function circuit. Due to this limita-
tion, the maximum number of cascaded circuits in practical
applications is typically less than 20. Potential resolutions
to this issue include augmenting the bias current to ensure
the proper functioning of all AFCs or employing the PCA
technique. The aforementioned solution is constrained by
the maximum allowable bias current, as it necessitates all
transistors to operate within the sub-threshold region. Also,
in the related works the desire operating range is limited.
When the parameter selected from the training is close to the
power supply rails, there is a reduction in the output current
value compared to another parameter located at the center
of the power supply. Consequently, the output current of the
AFC may reduce below the permissible operating current for
subsequent AFCs.

The novelty of the proposed work lies in addressing the
aforementioned operational issues. To achieve this, the AFCs
are not connected in cascade; instead, their output currents
are summed on the output node of each class. Consequently,
the bias (Ibias), parameter (Ir) and input (Iin) currents of
each AFC can be adjusted as low as necessary just to ensure
proper circuit operation. This approach effectively addresses

the limitation introduced by cascade circuits, enabling efficient
handling of multiple input features while maintaining excep-
tional levels of accuracy and power consumption. Moreover,
it provides an additional degree of freedom, as the weights of
each feature can be tuned independently, based on software
implementation.

This work outperforms related analog classifiers in power
consumption and energy per classification. It’s crucial to
highlight that, in this particular application, a high number
of input dimensions is encountered by the classifiers. The
proposed topology provides a notable advantage by elimi-
nating the need for PCA [30], allowing us to utilize all 49
input dimensions without any loss of information. In contrast,
other related topologies, that leverage cascaded AFCs, must
reduce the dimensions to 14 to achieve optimal accuracy,
which represents a significant limitation in these works. While
our network exhibits the capability to accurately classify all
3 classes, we have transformed the problem into a binary
classification scenario for a more meaningful comparison with
binary analog classifiers [19], [20], [23], [24], [26], [27]. As
a result,the performance of the proposed architecture for the
binary-classification problem is superior to the 3-class task for
the same dataset.

Regarding the area, the most efficient implementation
among the previously compared is [27] with 0.101mm2 for

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2024.3421313

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 10,2024 at 08:56:47 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 12

the diabetes disease management dataset (PCA has reduced
the number of dimensions at the cost of accuracy). The related
classifiers [15]–[17], [19], [20], [24], [26], [28] which build
upon the concept of multivariate activation functions occupy
chip area varying in the range 0.207mm2-1.271mm2 (PCA
has reduced the number of dimensions at the cost of accuracy).
Finally, the most complicated works [18], [21]–[23], [25]
occupy chip area varying in the range 1.174mm2-6.100mm2.
All are implemented for the diabetes dataset.

Among the ML models implemented in this work, i.e.
Bayes, Centroid and LVQ, the last one seems to achieve the
best classification accuracy. This is due to the complexity
of the LVQ algorithm over the other approaches. Moreover,
this implementation outperforms in terms of accuracy all the
other classifiers presented in Table III, except for the LSTM
algorithm, since the latter is advantageous in the context
of model complexity and hardware-approximation efficiency.
It has to be noted that the above performance is achieved
with the minimum energy per classification in comparison
to the other approaches. The minimum power consumption
is attained by the Threshold classifier, although sacrificing
accuracy and processing speed due to its model’s simplicity.
It is important to highlight that, in this kind of biomedical
applications, rapid processing speed is not a vital specification,
because of their low frequency [66]. For this reason, in the
proposed work, processing speed is intentionally diminished
in order to achieve better accuracy and power consumption.

Another point - In real time systems, increased sampling
rates results in increased data points, that offers a much richer
data than that is often reported in classification datasets used
for benchmarking. This means, even if accuracy prediction per
sample is lower, overall accuracy of the system can be higher
by using voting schemes in conjunction with multi classifier
systems.

VII. CONCLUSION

This work introduced an analog integrated architecture
implementing a Voting classification algorithm, targeting low
power applications, capable of accommodating several fea-
tures and achieving good accuracy (more than 86.20%). To
evaluate the proposed architecture, a thorough comparison
was conducted against other analog classifiers in the litera-
ture, using real-world biomedical dataset. All implementations
were power efficient (less than 688nW ) and low supply
voltage (only 0.6V). The model training was performed using
software-based classifiers. The robustness of the proposed
architecture, with respect to circuit component variations, was
evaluated using Monte Carlo and Corner simulation. Further-
more, the simulation also demonstrates robustness towards
circuit biasing parameters. The hardware design, schematic
and post-layout simulation was performed in the Cadence IC
Suite, employing TSMC’s 90 nm CMOS process technology.

REFERENCES

[1] S. Harrer, P. Shah, B. Antony, and J. Hu, “Artificial intelligence for
clinical trial design,” Trends in pharmacological sciences, vol. 40, no. 8,
pp. 577–591, 2019.

[2] I. Zafar, S. Anwar, W. Yousaf, F. U. Nisa, T. Kausar, Q. ul Ain, A. Unar,
M. A. Kamal, S. Rashid, K. A. Khan et al., “Reviewing methods
of deep learning for intelligent healthcare systems in genomics and
biomedicine,” Biomedical Signal Processing and Control, vol. 86, p.
105263, 2023.

[3] F. Boniolo, E. Dorigatti, A. J. Ohnmacht, D. Saur, B. Schubert, and
M. P. Menden, “Artificial intelligence in early drug discovery enabling
precision medicine,” Expert Opinion on Drug Discovery, vol. 16, no. 9,
pp. 991–1007, 2021.

[4] A. N. Navaz, M. A. Serhani, H. T. El Kassabi, N. Al-Qirim, and
H. Ismail, “Trends, technologies, and key challenges in smart and
connected healthcare,” Ieee Access, vol. 9, pp. 74 044–74 067, 2021.

[5] M. Alshamrani, “Iot and artificial intelligence implementations for
remote healthcare monitoring systems: A survey,” Journal of King Saud
University-Computer and Information Sciences, vol. 34, no. 8, pp. 4687–
4701, 2022.

[6] Y. Wei, J. Zhou, Y. Wang, Y. Liu, Q. Liu, J. Luo, C. Wang, F. Ren,
and L. Huang, “A review of algorithm & hardware design for ai-based
biomedical applications,” IEEE transactions on biomedical circuits and
systems, vol. 14, no. 2, pp. 145–163, 2020.

[7] J. P. Lynch, H. Sohn, and M. L. Wang, Sensor technologies for
civil infrastructures: Volume 1: Sensing hardware and data collection
methods for performance assessment. Woodhead Publishing, 2022.

[8] M. Sahu, R. Gupta, R. K. Ambasta, and P. Kumar, “Artificial intelligence
and machine learning in precision medicine: A paradigm shift in big data
analysis,” Progress in Molecular Biology and Translational Science, vol.
190, no. 1, pp. 57–100, 2022.

[9] N. Mirchandani, Y. Zhang, S. Abdelfattah, M. Onabajo, and A. Shri-
vastava, “Modeling and simulation of circuit-level nonidealities for
an analog computing design approach with application to eeg feature
extraction,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 42, no. 1, pp. 229–242, 2022.

[10] W. Haensch, T. Gokmen, and R. Puri, “The next generation of deep
learning hardware: Analog computing,” Proceedings of the IEEE, vol.
107, no. 1, pp. 108–122, 2018.

[11] F. Liu, S. Deswal, A. Christou, Y. Sandamirskaya, M. Kaboli, and
R. Dahiya, “Neuro-inspired electronic skin for robots,” Science robotics,
vol. 7, no. 67, p. eabl7344, 2022.

[12] Y.-T. Hsieh, K. Anjum, and D. Pompili, “Ultra-low power analog
recurrent neural network design approximation for wireless health
monitoring,” in 2022 IEEE 19th International Conference on Mobile
Ad Hoc and Smart Systems (MASS). IEEE, 2022, pp. 211–219.

[13] M. Elbtity, A. Singh, B. Reidy, X. Guo, and R. Zand, “An in-memory
analog computing co-processor for energy-efficient cnn inference on
mobile devices,” in 2021 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI). IEEE, 2021, pp. 188–193.

[14] T. Zeng, J. Xie, Y. Zhou, F. Fan, and S. Wen, “The reflective optical
analog computing system based on cholesteric liquid,” Adv. Mater,
vol. 31, p. 1806172, 2019.

[15] V. Alimisis, G. Gennis, C. Dimas, and P. P. Sotiriadis, “An analog
bayesian classifier implementation, for thyroid disease detection, based
on a low-power, current-mode gaussian function circuit,” in 2021 In-
ternational conference on microelectronics (ICM). IEEE, 2021, pp.
153–156.

[16] V. Alimisis, G. Gennis, K. Touloupas, C. Dimas, M. Gourdouparis, and
P. P. Sotiriadis, “Gaussian mixture model classifier analog integrated
low-power implementation with applications in fault management de-
tection,” Microelectronics Journal, vol. 126, p. 105510, 2022.

[17] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, “An analog programmable
multidimensional radial basis function based classifier,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 54, no. 10, pp.
2148–2158, 2007.

[18] A. Reda, L. Qi, Y. Li, and G. Wang, “A generic nano-watt power fully
tunable 1-d gaussian kernel circuit for artificial neural network,” IEEE
Trans. Circuits Syst. II Express Briefs, vol. 67, p. 3008679, 2020.

[19] K. Kang and T. Shibata, “An on-chip-trainable gaussian-kernel analog
support vector machine,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 57, no. 7, pp. 1513–1524, 2009.

[20] V. Alimisis, G. Gennis, M. Gourdouparis, C. Dimas, and P. P. Sotiriadis,
“A low-power analog integrated implementation of the support vector
machine algorithm with on-chip learning tested on a bearing fault
application,” Sensors, vol. 23, no. 8, p. 3978, 2023.

[21] K. Lee, J. Park, and H.-J. Yoo, “A low-power, mixed-mode neural net-
work classifier for robust scene classification,” Journal of Semiconductor
Technology and Science, vol. 19, no. 1, pp. 129–136, 2019.

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2024.3421313

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 10,2024 at 08:56:47 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 13

[22] R. Zhang and T. Shibata, “An analog on-line-learning k-means processor
employing fully parallel self-converging circuitry,” Analog Integrated
Circuits and Signal Processing, vol. 75, pp. 267–277, 2013.

[23] R. Zhang, N. Uetake, T. Nakada, and Y. Nakashima, “Design of
programmable analog calculation unit by implementing support vector
regression for approximate computing,” IEEE Micro, vol. 38, no. 6, pp.
73–82, 2018.

[24] F. Li, C.-H. Chang, and L. Siek, “A compact current mode neuron circuit
with gaussian taper learning capability,” in 2009 IEEE international
symposium on circuits and systems. IEEE, 2009, pp. 2129–2132.

[25] Z. Zhao, A. Srivastava, L. Peng, and Q. Chen, “Long short-term memory
network design for analog computing,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 15, no. 1, pp. 1–27,
2019.

[26] E. Georgakilas, V. Alimisis, G. Gennis, C. Aletraris, C. Dimas, and
P. P. Sotiriadis, “An ultra-low power fully-programmable analog general
purpose type-2 fuzzy inference system,” AEU-International Journal of
Electronics and Communications, vol. 170, p. 154824, 2023.

[27] V. Alimisis, G. Gennis, E. Tsouvalas, C. Dimas, and P. P. Sotiriadis, “An
analog, low-power threshold classifier tested on a bank note authenti-
cation dataset,” in 2022 International Conference on Microelectronics
(ICM). IEEE, 2022, pp. 66–69.

[28] V. Alimisis, V. Mouzakis, G. Gennis, E. Tsouvalas, and P. P. Sotiriadis,
“An analog nearest class with multiple centroids classifier implementa-
tion, for depth of anesthesia monitoring,” in 2022 International Con-
ference on Smart Systems and Power Management (IC2SPM). IEEE,
2022, pp. 176–181.

[29] V. Alimisis, M. Gourdouparis, G. Gennis, C. Dimas, and P. P. Sotiriadis,
“Analog gaussian function circuit: Architectures, operating principles
and applications,” Electronics, vol. 10, no. 20, p. 2530, 2021.

[30] T. Davies and T. Fearn, “Back to basics: the principles of principal
component analysis,” Spectroscopy Europe, vol. 16, no. 6, p. 20, 2004.

[31] F. Hu, S. Lakdawala, Q. Hao, and M. Qiu, “Low-power, intelligent
sensor hardware interface for medical data preprocessing,” IEEE Trans-
actions on Information Technology in Biomedicine, vol. 13, no. 4, pp.
656–663, 2009.

[32] C. Bachmann, M. Ashouei, V. Pop, M. Vidojkovic, H. De Groot, and
B. Gyselinckx, “Low-power wireless sensor nodes for ubiquitous long-
term biomedical signal monitoring,” IEEE Communications Magazine,
vol. 50, no. 1, pp. 20–27, 2012.

[33] Y. Zhang, N. Mirchandani, M. Onabajo, and A. Shrivastava, “Rssi
amplifier design for a feature extraction technique to detect seizures with
analog computing,” in 2020 IEEE international symposium on circuits
and systems (ISCAS). IEEE, 2020, pp. 1–5.

[34] M. Yang, C.-H. Yeh, Y. Zhou, J. P. Cerqueira, A. A. Lazar, and M. Seok,
“A 1µw voice activity detector using analog feature extraction and digital
deep neural network,” in 2018 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 2018, pp. 346–348.

[35] M. Yang, H. Liu, W. Shan, J. Zhang, I. Kiselev, S. J. Kim, C. Enz,
and M. Seok, “Nanowatt acoustic inference sensing exploiting nonlinear
analog feature extraction,” IEEE Journal of Solid-State Circuits, vol. 56,
no. 10, pp. 3123–3133, 2021.

[36] S. Ray and P. R. Kinget, “Ultra-low-power and compact-area analog
audio feature extraction based on time-mode analog filterbank interpo-
lation and time-mode analog rectification,” IEEE Journal of Solid-State
Circuits, vol. 58, no. 4, pp. 1025–1036, 2022.

[37] R. N. Kandala, R. Dhuli, P. Pławiak, G. R. Naik, H. Moeinzadeh, G. D.
Gargiulo, and S. Gunnam, “Towards real-time heartbeat classification:
evaluation of nonlinear morphological features and voting method,”
Sensors, vol. 19, no. 23, p. 5079, 2019.

[38] S. Kumari, D. Kumar, and M. Mittal, “An ensemble approach for
classification and prediction of diabetes mellitus using soft voting
classifier,” International Journal of Cognitive Computing in Engineering,
vol. 2, pp. 40–46, 2021.

[39] A. Yousaf, M. Umer, S. Sadiq, S. Ullah, S. Mirjalili, V. Rupapara, and
M. Nappi, “Emotion recognition by textual tweets classification using
voting classifier (lr-sgd),” IEEE Access, vol. 9, pp. 6286–6295, 2020.

[40] E.-S. M. El-Kenawy, A. Ibrahim, S. Mirjalili, M. M. Eid, and S. E.
Hussein, “Novel feature selection and voting classifier algorithms for
covid-19 classification in ct images,” IEEE access, vol. 8, pp. 179 317–
179 335, 2020.

[41] C.-K. D. J. Clore, John and B. Strack, “Diabetes 130-US hospitals
for years 1999-2008,” UCI Machine Learning Repository, 2014, DOI:
https://doi.org/10.24432/C5230J.

[42] R. Delgado, “A semi-hard voting combiner scheme to ensemble multi-
class probabilistic classifiers,” Applied Intelligence, vol. 52, no. 4, pp.
3653–3677, 2022.

[43] J. Cao, S. Kwong, R. Wang, X. Li, K. Li, and X. Kong, “Class-
specific soft voting based multiple extreme learning machines ensemble,”
Neurocomputing, vol. 149, pp. 275–284, 2015.

[44] M. Wiggins, A. Saad, B. Litt, and G. Vachtsevanos, “Evolving a bayesian
classifier for ecg-based age classification in medical applications,”
Applied soft computing, vol. 8, no. 1, pp. 599–608, 2008.

[45] D. M. Diab and K. M. El Hindi, “Using differential evolution for fine
tuning naïve bayesian classifiers and its application for text classifica-
tion,” Applied Soft Computing, vol. 54, pp. 183–199, 2017.

[46] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

[47] S. Taheri and M. Mammadov, “Learning the naive bayes classifier with
optimization models,” International Journal of Applied Mathematics and
Computer Science, vol. 23, no. 4, pp. 787–795, 2013.

[48] C. Liu, W. Wang, G. Tu, Y. Xiang, S. Wang, and F. Lv, “A new centroid-
based classification model for text categorization,” Knowledge-Based
Systems, vol. 136, pp. 15–26, 2017.

[49] C. Manning, P. Raghavan, and H. Schütze, “Vector space classification,”
Introduction to Information Retrieval, pp. 289–317, 2008.

[50] H. Park, M. Jeon, and J. B. Rosen, “Lower dimensional representation
of text data based on centroids and least squares,” BIT Numerical
mathematics, vol. 43, pp. 427–448, 2003.

[51] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The ma-
halanobis distance,” Chemometrics and intelligent laboratory systems,
vol. 50, no. 1, pp. 1–18, 2000.

[52] T. Kohonen, “Self-organizing maps, ser,” Information Sciences. Berlin:
Springer, vol. 30, 2001.

[53] D. Nova and P. A. Estévez, “A review of learning vector quantization
classifiers,” Neural Computing and Applications, vol. 25, pp. 511–524,
2014.

[54] W.-L. Hung, D.-H. Chen, and M.-S. Yang, “Suppressed fuzzy-soft
learning vector quantization for mri segmentation,” Artificial intelligence
in medicine, vol. 52, no. 1, pp. 33–43, 2011.

[55] N. Pradhan, P. Sadasivan, and G. Arunodaya, “Detection of seizure
activity in eeg by an artificial neural network: A preliminary study,”
Computers and Biomedical Research, vol. 29, no. 4, pp. 303–313, 1996.

[56] J.-Y. Jeng, T.-F. Mau, and S.-M. Leu, “Prediction of laser butt joint
welding parameters using back propagation and learning vector quanti-
zation networks,” Journal of Materials Processing Technology, vol. 99,
no. 1-3, pp. 207–218, 2000.

[57] M. Kaden, K. S. Bohnsack, M. Weber, M. Kudła, K. Gutowska,
J. Blazewicz, and T. Villmann, “Learning vector quantization as an
interpretable classifier for the detection of sars-cov-2 types based on
their rna sequences,” Neural Computing and Applications, vol. 34, no. 1,
pp. 67–78, 2022.

[58] E. Seevinck and R. J. Wiegerink, “Generalized translinear circuit princi-
ple,” IEEE journal of solid-state circuits, vol. 26, no. 8, pp. 1098–1102,
1991.

[59] J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, “Winner-
take-all networks of o (n) complexity,” Advances in neural information
processing systems, vol. 1, 1988.

[60] X. Ying, “An overview of overfitting and its solutions,” in Journal of
physics: Conference series, vol. 1168. IOP Publishing, 2019, p. 022022.

[61] M. Hock, A. Hartel, J. Schemmel, and K. Meier, “An analog dynamic
memory array for neuromorphic hardware,” in 2013 European Confer-
ence on Circuit Theory and Design (ECCTD). IEEE, 2013, pp. 1–4.

[62] R. Li and H. Fariborzi, “Ultra-low power data converters with beol nem
relays,” in 2018 IEEE 61st International Midwest Symposium on Circuits
and Systems (MWSCAS). IEEE, 2018, pp. 627–630.

[63] A. K. Sharma, M. Madhusudan, S. M. Burns, P. Mukherjee, S. Yaldiz,
R. Harjani, and S. S. Sapatnekar, “Common-centroid layouts for analog
circuits: Advantages and limitations,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2021, pp.
1224–1229.

[64] N. Kazemi, M. Abdolrazzaghi, P. E. Light, and P. Musilek, “In–human
testing of a non-invasive continuous low–energy microwave glucose
sensor with advanced machine learning capabilities,” Biosensors and
Bioelectronics, vol. 241, p. 115668, 2023.

[65] K. Lata, S. Saini, and G. Sinha, “Vlsi and hardware implementation us-
ing machine learning methods: A systematic literature review,” VLSI and
Hardware Implementations using Modern Machine Learning Methods,
pp. 1–21, 2021.

[66] H.-T. Wu, “Current state of nonlinear-type time–frequency analysis and
applications to high-frequency biomedical signals,” Current Opinion in
Systems Biology, vol. 23, pp. 8–21, 2020.

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2024.3421313

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 10,2024 at 08:56:47 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 14

Vassilis Alimisis (Student Member IEEE), received
the B.Sc. in Physics (top 1%) and the M.Sc. degree
in Electronics and Communications from the Uni-
versity of Patras, Greece, in 2017 and 2019 respec-
tively. Currently, he is pursuing Ph.D. degree at the
National Technical University of Athens (NTUA),
Greece, under the supervision of Professor Paul P.
Sotiriadis. His Ph.D. Thesis and research are sup-
ported and financed by the E.L.K.E. NTUA Schol-
arships. He is a Teaching Assistant in undergraduate
and graduate courses and supervises Diploma The-

sis. He has authored and co-authored several conference papers and journal
articles. His main research interests include analog microelectronic circuits,
low power electronics, analog computing and integrated circuit architectures
with applications in artifcial intelligence and machine learning. He has
received the Best Paper Award in the IEEE Int. Conf. on Microelectronics
2020, the Best Paper Award in the IEEE Int. Conf. on Microelectronics 2021,
the Best Paper Award (3rd Place) in the IEEE Int. Conf. on Microelectronics
2023, the Best Paper Award in IEEE Symposium on Integrated Circuits
and Systems Design (SBCCI) 2021 and the Best Paper Award in the 1st
International Conference on Frontiers of Artificial Intelligence, Ethics, and
Multidisciplinary Applications in 2023. He regularly reviews for many IEEE
transactions and conferences and serves on proposal review panels.

Charis Aletraris (Student Member IEEE), received
the Diploma degree in Electrical and Computer
Engineering from the National Technical University
of Athens (NTUA), Greece, in 2023. He has co-
authored a journal article. His main research interests
include analog microelectronic circuits, ultra-low
power electronics, analog computing and integrated
circuit architectures with applications in artificial
intelligence and machine learning.

Nikolaos P. Eleftheriou (Student Member IEEE),
is a Senior Graduate Student in the Department of
Electrical and Computer Engineering of the National
Technical University of Athens (NTUA), Greece.
Currently he is pursuing his Diploma Thesis under
the supervision of Professor Paul P. Sotiriadis. He
is recipient of the Panagiotis Triantafyllidis Scholar-
ship for undergraduate studies. He has co-authored
several conference papers and journal articles. He
has received the Best Paper Award (3rd Place) in
the IEEE Int. Conf. on Microelectronics (ICM), 2023

and the Best Paper Award in the 1st International Conference on Frontiers of
Artificial Intelligence, Ethics, and Multidisciplinary Applications in 2023. His
main research interests include microelectronic circuit design, analog circuits
and analog hardware computing techniques with applications in fuzzy systems,
artificial intelligence and machine learning.

Emmanouil Anastasios Serlis (Student Member
IEEE), received the Diploma degree in Electrical and
Computer Engineering from the National Technical
University of Athens (NTUA), Greece, in 2023.
He has co-authored a journal article. His main re-
search interests include analog microelectronic cir-
cuits, ultra-low power electronics, analog computing
and integrated circuit architectures with applications
in artificial intelligence and machine learning.

Alex James (Senior Member, IEEE) received the
Ph.D. degree from Griffith University, Queensland,
Australia. He is currently a Professor and the Dean
(Academic) of the Kerala University of Digital
Sciences, Innovation and Technology (aka Digital
University Kerala). He is a Professor-in-Charge with
Maker Village, the Chief Investigator of the India
Innovation Centre for Graphene and CTO for India
Graphene Engineering and Innovation Centre. His
research interests include AI-neuromorphic systems
(software and hardware), VLSI, and image process-

ing. He is a member of the IEEE CASS TC on Nonlinear Circuits and Systems,
the IEEE CTSoc TC on Quantum in Consumer Technology (QCT), TC on
Machine learning, Deep learning and AI in CE (MDA), the IEEE CASS TC on
Cellular Nanoscale Networks and Memristor Array Computing (CNN-MAC),
and the IEEE CASS SIG on AgriElectronics. He was a member of the IET
Vision and Imaging Network. He is also a member of the BCS’ Fellows
Technical Advisory Group (F-TAG). He was an Editorial Board Member
of Information Fusion (2010–2014). He was awarded the IEEE Outstanding
Researcher by the IEEE Kerala Section in 2022, the Kairali Scientist Award
(Kairali Gaveshana Puraskaram) for Physical Science in 2022, and the Best
Associate Editor for TCAS1 in 2021. He was the Founding Chair of the
IEEE CASS Kerala Chapter. He has been serving as an Associate Editor for
IEEE Access, since 2017, Frontiers in Neuroscience (Neuromorphic Section),
since 2022, IEEE Transactions on Circuits and System— I: Regular Papers
(2018–2023), and IEEE Open Journal of Circuits and Systems (2022–2023).
He is also serving as an Associate Editor-in-Chief for IEEE Open Journal
of Circuits and Systems, since 2024, and an Associate Editor for IEEE
Transactions on Biomedical Circuits and Systems, since 2024. He is a Life
Member of ACM, a Senior Fellow of HEA, a fellow of the British Computer
Society (FBCS), and a fellow of IET (FIET).

Paul P. Sotiriadis (Fellow IEEE), is a Professor of
Electrical and Computer Engineering of the National
Technical University of Athens (NTUA), Greece,
the Director of the Electronics Laboratory of the
NTUA and a governing board member of the Hel-
lenic (National) Space Center of Greece. He runs
a team of 25 researchers. He received the Diploma
degree in Electrical and Computer Engineering from
the NTUA in 1994, the M.S. degree in Electrical
Engineering from Stanford University, USA in 1996
and the Ph.D. degree in Electrical Engineering and

Computer Science from the Massachusetts Institute of Technology, USA,
in 2002. In 2002, he joined the faculty of the Johns Hopkins University
Electrical and Computer Engineering Department and in 2012 he joined
the faculty of the Electrical and Computer Engineering Department of the
NTUA. He has authored and coauthored more than 200 research publications,
most of them in IEEE journals and conferences, holds one patent, and
has contributed several chapters to technical books. Prof. Sotiriadis research
interests include the design, optimization, and mathematical modeling of
analog, mixed-signal and RF integrated and discrete circuits, sensor and
instrumentation architectures with emphasis in biomedical instrumentation,
advanced RF frequency synthesis, and, the application of machine learning
and general AI in the operation as well as the design of electronic circuits. He
has received several awards, including the prestigious Guillemin-Cauer Award
from the IEEE Circuits and Systems Society in 2012, the Best Paper Award in
the 1st International Conference on Frontiers of Artificial Intelligence, Ethics,
and Multidisciplinary Applications in 2023, the Best Paper Award (3rd Place)
in the IEEE Int. Conf. on Microelectronics (ICM), 2023, the Best Paper
Award in the IEEE International Conf. on Microelectronics (ICM), 2021, the
Best Paper Award in the IEEE Symposium on Integr. Circ. and Sys. Design
(SBCCI), 2021, the Best Paper Award in the IEEE International Conf. on
Microelectronics (ICM), 2020, the Best Paper Award in the IEEE International
Conf. on Modern Circ. and Sys. Tech. 2019, Best Paper Award in the IEEE
International Frequency Control Symposium 2012, Best Paper Award in the
IEEE International Symp. on Circuits and Systems 2007 and the IΕΕΕ Circuits
and Systems Society (CASS) Outstanding Technical Committee Recognition
2022. Also, he has been in the list of the top 2% most influential researchers
in the world in 2020, 2022, and 2023. Dr. Sotiriadis is an Associate Editor of
the IEEE Sensors Journal and IEEE Open Journal of Circuits and Systems, has
served as an Associate Editor of the IEEE Trans. on Circuits and Systems –
I (2016-2020) and the IEEE Trans. on Circuits and Systems – II (2005-2010)
and has been a member of technical committees of many conferences. He
regularly reviews for many IEEE transactions and conferences and serves on
proposal review panels.

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2024.3421313

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 10,2024 at 08:56:47 UTC from IEEE Xplore.  Restrictions apply. 


